
1.0) Introduction

This file describes the enhancements and changes included in
the 4.04 release of PSpice.

For information regarding installation, operation,
and technical details about the package, you may purchase the
Circuit Analysis User's Guide for $50.00.

2.0) Updates and Corrections to the User's Guide

All manual modifications for this version have been marked by shading
those items. This makes it easy to locate the new MicroSim product
features, and calls attention to the items which have been changed.

PSpice (all platforms)

(1) For the BSIM MOS model (level=4): if the model parameter XPART is
negative, then the Meyer capacitance model is used. This avoids the
potential for negative capacitance values from BSIM's charge-based
capacitance model, however care must be exercised regarding charge
conservation with the Meyer model.

(2) Circuit files using models with parameters from the PSpice
libraries, must define those parameters. If those parameters are not
defined within the circuit file, PSpice will use zeros and erroneous
results will occur. This inconvenience will be corrected in our next
version.

Probe (all platforms)

The X_axis menu now has a new item named "Unrestricted_data", which
resets the restriction on the X_axis data set by "Restrict_data".

Probe (VAX only)

 The VTxxx keypad <Pg Up> and <Pg Dn> keys are defined incorrectly in
the User's Guide. They should be as follows:

⁄ƒƒƒƒƒƒƒƒ¬ƒƒƒƒƒƒƒƒ¬ƒƒƒƒƒƒƒƒ¬ƒƒƒƒƒƒƒƒø
≥PF1 ≥PF2 ≥PF3 ≥PF4 ≥
≥ ≥ ≥ ≥ ≥
≥ ≥ ≥ ≥ ≥
√ƒƒƒƒƒƒƒƒ≈ƒƒƒƒƒƒƒƒ≈ƒƒƒƒƒƒƒƒ≈ƒƒƒƒƒƒƒƒ¥
≥7 ≥8 ≥9 ≥- ≥
≥ ≥ ≥ ≥ ≥
≥ <Home> ≥ <Up> ≥ <Pg Up>≥ ≥
√ƒƒƒƒƒƒƒƒ≈ƒƒƒƒƒƒƒƒ≈ƒƒƒƒƒƒƒƒ≈ƒƒƒƒƒƒƒƒ¥
≥4 ≥5 ≥6 ≥, ≥
≥ ≥ ≥ ≥ ≥
≥ <Left> ≥ ≥ <Right>≥ ≥
√ƒƒƒƒƒƒƒƒ≈ƒƒƒƒƒƒƒƒ≈ƒƒƒƒƒƒƒƒ≈ƒƒƒƒƒƒƒƒ¥
≥1 ≥2 ≥3 ≥ Enter ≥
≥ ≥ ≥ ≥ ≥

≥ <End> ≥ <Down> ≥ <Pg Dn>≥ ≥
√ƒƒƒƒƒƒƒƒ¡ƒƒƒƒƒƒƒƒ≈ƒƒƒƒƒƒƒƒ¥ ≥
≥0 ≥. ≥ ≥
≥ ≥ ≥ ≥
≥ ≥ ≥ ≥
¿ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ¡ƒƒƒƒƒƒƒƒ¡ƒƒƒƒƒƒƒƒŸ

Device Equations (OS/2 only)

The MicroSoft linker v5.03 or later is required. Version 5.01 of the
linker, which comes with the MicroSoft C compiler v5.1, has a bug when
used with PSpice OS/2 v4.04 Device Equations. You willbe able to
link the program but when you go to run it, you will see the error:

SYS1059: The system cannot execute the specified program

If you have v5.01, call MicroSoft at (206) 454-2030 and ask for a
later version.

Model Library (all platforms)

The library file "lin_tech.lib" from Linear Technology, Inc. contains
14 models not listed in the July 1990 library listing:

LT118A/LT LT1002A/LT LT1014A/LT
LTC1052CS/LT LTC1053/LT LTC7652/LT
OP-15E/LT OP-15F/LT OP-15G/LT
OP-16E/LT OP-16F/LT OP-16G/LT
OP-215E/LT OP-215G/LT

Also, note that the SCR and triac models require the Analog Behavioral
Modeling option for their use.

DOS/16M Version (ONLY)

The notes in section 2.1.2.5.5 (pages 21-22) about virtual memory are
correct, however the meaning of the environment variable "DOS16VM" has
changed. The value of this variable now indicates the total amount
of virtual memory (that is, the amount of memory you want to have for
the application). If the size indicated by DOS16VM is MORE than the
available physical memory, a swap file is created to take up the
difference. If is size indicated by DOS16VM is LESS than the
available physical memory, no swap file is created and the application
is limited to physical memory (that is, DOS16VM's value is ignored).

3.0) Program modifications since version 4.03.

PSPICE

1) The Macintosh can now specify search paths for libraries
and can save displays in MACPAINT format files.

2) The following PSpice options are now supported on HP/Apollo
systems:

-Wi start iconic
-Wp <x> <y> frame position
-WP <x> <y> icon position

3) Expressions used to define global parameters can now use
previously defined global parameters. For example:

 .PARAM pi = 3.14159265, twopi = {2*pi}

4) Library additions: The voltage regulator section of
LINEAR.LIB now has 73 models for fixed positive and fixed
negative regulators, 3-terminal voltage regulators, and the
LM723 precision voltage regulator.

A new library file, HARRIS.LIB, contains seven models from
Harris Semiconductor. These include the wide-bandwidth
HA-2539/40, the fast-settling HA-5190, and the low noise
HA-5102/12 and HA-5104/14.

A new library file, THYRISTR.LIB, contains 100 SCR models.
These models use/require Analog Behavioral Modeling.

5) For DOS, DOS/16M, and OS/2: The following options are supported:

-ps = COMn: Test only the specified com port for the
security plug.

-ps = xxxx Test only the com port at physical
address xxxx (hex) for the security plug.

6) For DOS/16M versions of PSpice, Probe, and the Control Shell:
These applications have virtual memory capability, which means
they can access more memory than is actually installed in your
computer. If the entire program, and its data, doesn't fit
in RAM, part of it is kept on disk in a swap file. When
information is needed from the swap file, it is loaded from the
disk into RAM. To create more room for it, another part of the
program, or its data, may be swapped from RAM to disk.

These programs will look for two environment variables, TMP and
DOS16VM, which will define where the swap file is located and how
large the swap file may be in kilobytes. For example, the
DOS commands

 SET TMP=F:\
 SET DOS16VM=4000

will place the swap file on the F: drive, and allow the swap file
to be 4000KB (about 4MB). If TMP is not set, the swap file will
be placed in the current directory. If DOS16VM is not set, the swap
file will be zero in size. We suggest you set these environment
variables in your AUTOEXEC.BAT file.

There must be room for the swap file when the application is
started, and the swap file will be deleted when the application
finishes. Note: it is counterproductive to set aside extended
memory as RAM-disk for the swap file... you will be better off

having the memory directly available to the program.

With virtual memory, only the sections of program code and data
that are active need be in RAM. For PSpice, this frees roughly
500KB of RAM for circuit data, since program sections such as
read-in and checking are not needed during the main simulation
process. For Probe, you can set-up the swap file to view extremely
large (megapoint) waveforms. For Probe "snoop" during simulation,
Probe may actually swap PSpice out of RAM. When Probe finishes,
PSpice will swap itself back into RAM. For all applications,
start-up will be a bit faster as only the required code is loaded,
instead of the entire program.

Note about large circuit simulations: While circuits that exceed
the amount of physical RAM may be attempted, these simulations will
be very slow. This is also true for other virtual memory
environments, such as OS/2, UNIX, and VAX/VMS. PSpice needs access
to nearly all of its data for each iteration, and the constant swap
activity will slow the simulation. For large simulations, we
suggest 1MB of RAM for every 400 active devices.

PROBE

1) The 8514 display now is available for DOS/16M and OS/2
operating systems.

2) The DEC LN03 and HP PaintJet printers are now supported.

3) A mouse can now be used on all platforms to make menu
selections and to perform other miscellaneous functions
in addition to using the keyboard.

 For example: add trace
To display the list of variable names, press either
the <F4> key, or press the right mouse button
(placement of cursor is not important).

The list of variable names, voltages and currents,
is displayed on the upper portion of the screen. If
you press the <F4> key a second time, a menu is displayed
allowing you to increase or decrease the number of nodes
the user can look at. You may show alias names, show
internal subcircuit nodes, remove existing voltages, or
remove existing currents. The alias names when listed
are indented and represent the identical node as the
unindented variable name listed above it.

The mouse can now be used to select the desired variable
items. When the variable(s) have been selected, press
the left mouse button with the cursor anywhere in the
bottom two rows of the screen, and the selected
traces will be displayed.

The selected variable items can also be edited, using
the keyboard, to generate expressions. If a variable
item is selected while the cursor is positioned within
an expression, the variable item will be placed at that

position.

The mouse can also be used to select a digital trace. Clicking
the left mouse button on the digital trace name moves the high-
light to that name. Clicking on the area just above or below
the digital trace names will scroll the digital traces (if there
are traces "off screen" to scroll. Then, clicking in the bottom
two lines of the screen will cause the hightlighted trace name
to be the selected trace.

4) A zoom feature as been added to Probe. This provides a quick
and simple, visual way to change the x and y ranges (that is
to zoom the display in or out).

Previously this was done by using the Set_range or Auto-range
functions in two different menus. The Set-range function
requires you to know and to enter the new axis values.

The new function provides the ability to zoom into a region
you specify "visually", either with a mouse or by moving a
cursor with arrow keys.

"Zoom" has been added to the main menu. When selected, the
Zoom menu has the options of

 Exit Specify_region X_zoom_in Y_zoom_in Zoom_out Auto_range

When Zoom is selected, a small cross-hair will appear in the
center of the active plot. It can be moved to any region of
any plot, using the arrow keys or by clicking the left mouse
button, while not moving the mouse.

Also, while not in a menu selection, pressing the left mouse
button and moving the mouse will do a "Specify_region" zoom.

Specify_region
pressing the spacebar or holding down the left mouse
button establishes one corner of the region (to be
zoomed to). Using the arrow keys, or moving the
mouse, draws a "rubber banding" box. Pressing the
spacebar again or releasing the left mouse button,
causes the display to be redrawn to new axis
coordinates. Both corners of the region must be
in the same plot. If the rubber banding box is
outside the plot, the "zoom" will be clipped to
the edge of the plot.

X_zoom_in
zooms in by a factor of 2, in the X direction,
around the small cross-hair cursor.

Y_zoom_in
zooms in by a factor of 2, in the Y direction,
around the small cross-hair cursor.

Zoom_out
zooms out by a factor of 2, in both the X and Y
directions, around the small cross-hair cursor.
Does not exceed data "auto range" limits. If
auto range limits are exceeded in some direction,
then only the direction in which they are not
exceeded will zoom out by the full factor of 2.

Auto_range
causes both the X and Y axis to auto range to cover
all data values of currently displayed traces on
the currently selected plot (the plot that the small
cross-hair cursor is in).

5) A "Real-Time" waveform viewer (auto_update) is now available
under OS/2. This feature allows you to view output waveforms
while your simulation is running.

Probe must be run with the /A[sec] (or -A[sec]) flag, where
sec is the time interval (in seconds) between auto-updates.
If not specified, sec defaults to 30.

In the analog and digital plot menu, there is a new item
named "Update", used to activate auto_update. When "Update"
is selected, the traces will be updated at the time interval
specified on initialization (as long as the displayed
traces are of the on-going analysis). The update time
interval may be altered by selecting "Change_interval" or
Auto_update may be suspended by selecting "Exit" fom the
Update menu.

6) In Probe, the expression handling for AC analysis has been
changed to do complex arithmetic. In version 4.03 and earlier,
output variables always produced real values (e.g., VP(4),
VM(16,7), IG(CLOAD)). An output variable without a suffix
defaulted to an "M" suffix (magnitude). So, V(4)+V(5) meant
the sum of the magnitudes of the voltages at nodes 4 and 5.

In 4.04 this was changed so that output variables default to
having complex values for AC analysis. A magnitude function
is applied to the result of the entire expression. So,
V(4)+V(5) means the magnitude of the sum of the (complex)
voltages at nodes 4 and 5. Note that this means that
V(4)-V(5) is the same as V(4,5).

"M" (magnitude), "P" (phase), "R" (real part), "IMG"
(imaginary part), and "G" (group delay) were added to the
function list. So, P(V(4)+V(5)) is the phase of the sum of
the (complex) voltages at nodes 4 and 5. Each of these
functions produces a real value: its imaginary part is 0.

The handling of expressions for DC and transient analysis
is unchanged.

7) For SUN systems: In Probe, Parts, and StmEd the colors used
for the foreground, background, and traces on Sun systems can
be changed. Todo this, bring up the frame menu by clicking
the right mouse button on the title bar. Select the "Props"
entry. A window will appear with buttons labeled "Save" and
"Close" and a total of eight rows of sliders. Each row
contains an individual slider for the Red, Green, and Blue
component of a color selection.

The first two rows let you set up the foreground (axes, text)
and background (empty window area). The other six rows are
for traces 1 through 6. (The colors recycle after the
available six have been used.) A color component is changed
by dragging in the marked area of the slider. The new color
will be displayed when you release the mouse button.

To save a color setup, click on the "Save" button. (Changes
are not saved automatically.) The color map will be written
to the file pspice.col in the current directory. The default
setup is read from the file pspice.col in the current
directory or anywhere on the PATH when the program starts.

8) The Cursor Menu now contains a "Hard Copy" option which
enables you to print the cursors and their values as shown
on the display.

9) The default device file is now named PSPICE.DEV, rather
than PROBE.DEV. The device file is only shipped with the
SUN and HP/Apollo platforms, and will have to be created
for the other platforms. A program called SETUPDEV is now
included with the PSpice package which allows you to create
or update the display and hard copy entries in your device file.

PARTS

1) The mouse function has been added but is not fully
tested.

2) The bipolar transistor has been updated to handle power
devices.

3) Parts now has an optimizer which gives more accurate model
parameters.

4) For SUN systems: In Probe, Parts, and StmEd the colors
used for the foreground, background, and the traces on Sun
systems can be changed. For details, see the "Probe" section
of this document.

DIGITAL SIMULATION

1) Programmable Logic Arrays

The PSpice digital simulator now has primitive logic devices
which are programmable logic gate arrays. The logic array
is made up of a variable number of inputs, which form

columns, and a variable number of outputs, which form rows.
Each output (row) is driven by one logic gate. The
"program" for the device determines which of the inputs
(columns) are connected to each gate. All of the gates in
the array are the same type (AND, OR, NAND, NOR, etc.).
Commercially available IC's (PAL's, GAL's, PEEL's, and so
on) may have buffers, registers, more than one array of
gates, and so on, all on the same part. To model these
parts we place one or more Programmable Logic Array devices
along with the necessary flipflops, gates and other logic in
a .SUBCKT, in a library. (The same way that we model other
MSI parts.)

There are two ways to provide the program data for
Programmable Logic Arrays. The normal way is to give the
name of a JEDEC format file which contains the program data.
This file would normally be produced by a PLD design package
which translates logic design information into a program for
a specific programmable logic part. The other way to
program the logic array is by including the program data, in
order, on the device line (with the DATA=... construct).

If parts from the MicroSim library are used with a JEDEC
file, then the engineer does not need to use the
Programmable Logic Array primitive, or any of the model
information below, since the library contains all of the
appropriate modeling information. Using a PLD from the
library is just like using any other logic device from the
library, except that you need to tell PSpice the name of the
JEDEC file which contains the program for that part. A TEXT
parameter named JEDECFILE is used to specify the file name,
as shown in the example below:

 X1 IN1 IN2 IN3 IN4 IN5 IN6 IN7 IN8 IN9 IN10 IN11 IN12 IN13 IN14
 + OUT1 OUT2 OUT3 OUT4

 + PAL14H4
 + TEXT: JEDECFILE = "myprog.jed"

This example creates a 14H4 PAL which is programed by the
JEDEC file myprog.jed.

Programmable Logic Array Device Format:

 U<name> <pld type>(<#inputs>, <#outputs>) <input_node>*
 <output_node>* <(timing model) name> <(io_model) name>
 [FILE=<(file name) text value>] [DATA=<radix
 flag>$<program data>$] [MNTYMXDLY=<(delay select)
 value>] [IOLEVEL=<(interface model level) value>]

Where:

pld type is one of:

 PLAND and array
 PLOR or array
 PLXOR exclusive-or array
 PLNAND and-invert array
 PLNOR or-invert array

 PLNXOR exclusive-or-invert array
 PLANDC and array with true and complement columns
 for each input
 PLORC or array with true and complement columns for
 each input
 PLXORC exclusive-or array with true and complement
 columns for each input
 PLNANDC and-invert array with true and complement
 columns for each input
 PLNORC or-invert array with true and complement
 columns for each input
 PLNXORC exclusive-or-invert array with true and
 complement columns for each input

file name text value is:

The name of a JEDEC format file which specifies the
programming data for the array. The file name may be
specified as a text constant (enclosed in double quotes
'"'), or as a text expression (enclosed in vertical bars
'|'). If a FILE is specified, any programming data
specified by a DATA section is ignored. The mapping of
addresses in the JEDEC file to locations in the array is
controlled by model parameters specified in the timing
model.

radix flag is one of:

 B binary data follows
 O octal data follows (most significant bit has
 lowest address)
 X hexadecimal data follows (most significant bit has
 lowest address)

program data:

The program data is a string of data values used to program
the logic array. The values start at address zero, which
programs the array for the connection of the first input pin
to the gate which drives the first output. A '0' indicates
that the input is not connected to the gate, and a '1'
indicates that the input is connected to the gate.
(Initially, all inputs are not connected to any gates.) The
next value programs the array for the connection of the
complement of the first input to the gate which drives the
first output (if this is a programmable gate with true and
complement inputs) or, the second input connection to the
gate which drives the first output. Each additional '1' or
'0' programs the connection of the next input or its
complement to the gate which drives the first output, until
the connection of all inputs (and their complements) to that
gate have been programmed. Data values after that program
the connection of inputs to the gate driving the second
output, and so on.

The data values must be enclosed in dollar signs ('$'). The
data values may have spaces or continuation lines between
the data values.

The example below defines a 3-to-8 line decoder. The inputs
are IN1 (MSB), IN2, and IN3 (LSB). If the inputs are all
low, OUT0 is true. If IN1 and IN2 are low and IN3 is hi,
then OUT1 is true, and so on. The programming data has been
typed in as an array, so that is easier to read. The
comments above the columns identify the true and false
(complement) inputs, and the comments at the end of the line
identify the output pin which is controlled by that gate.
(PSpice does not process any of these comments, they just help
make the programming data readable.)

 UDECODE PLANDC(3, 8) ; 3 inputs, 8 outputs
 + IN1 IN2 IN 3 ; the inputs
 + OUT0 OUT1 OUT2 OUT3 OUT4 OUT5 OUT6 OUT7 ; the outputs
 + PLD_MDL ; the timing model name
 + IO_STD ; the I/O model name
 + DATA=B$; the programming data
 * IN1 IN2 IN3
 * TF TF TF
 + 01 01 01 ; OUT0
 + 01 01 10 ; OUT1
 + 01 10 01 ; OUT2
 + 01 10 10 ; OUT3
 + 10 01 01 ; OUT4
 + 10 01 10 ; OUT5
 + 10 10 01 ; OUT6
 + 10 10 10 $; OUT7

The timing model for the Programmable Logic Arrays has a
model type of UPLD. The model parameters are:

 Name Description Units Default

 TPLHMN delay: in to out, low to hi, min sec 0
 TPLHTY delay: in to out, low to hi, typ sec 0
 TPLHMX delay: in to out, low to hi, max sec 0
 TPHLMN delay: in to out, hi to low, min sec 0
 TPHLTY delay: in to out, hi to low, typ sec 0
 TPHLMX delay: in to out, hi to low, max sec 0
 OFFSET JEDEC file mapping: address of first
 input and first gate program. 0
 COMPOFFSET JEDEC file mapping: address of
 complement of first input and
 first gate program 1
 INSCALE JEDEC file mapping: amount the JEDEC
 file address changes for each
 new input pin. std 1
 true/cmp 2
 OUTSCALE JEDEC file mapping: amount the JEDEC
 file address changes for each
 new output pin (gate). std # inputs
 true/cmp 2*(# inputs)

 MNTYMXDLY delay selection: 0=default, 1=min, 2=typ, 3=max 0

2) Read Only Memories

The PSpice digital simulator now has primitive logic devices
which are read only memories.

There are two ways to provide the program data for ROMs.
The normal way is to give the name of an Intel Hex Format
file. This file is read before the simulation starts, and
the ROM is "programmed" to match the data in the file. The
other way to program the ROM is to include the program data
on the device line (with the DATA=... construct).

If parts from the MicroSim library are used with an Intel
Hex format program file, then the engineer does not need to
use the ROM device primitive, or any of the model
information below, since the library contains all of the
appropriate modeling information. Using a ROM from the
library is just the same as using any other logic device
from the library, except that you need to tell PSpice the
name of the Intel Hex file which contains the ROM program.
A TEXT parameter named HEXFILE is used to specify the file
name, as shown in the following example.

 X1 CEbar OEbar A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11
 + O0 O1 O2 O3 O4 O5 O6 O7
 + ROM2732A
 + TEXT: HEXFILE = "mydata.hex"

This example creates a 2732A PROM (4K x 8) which is
programmed by the Hex file mydata.hex.

NOTE: The 4.04P release (Beta Site 4.04) does not support
the reading of Intel Hex Format files.
Read Only Memory Device Format:

 U<name> ROM(<#address pins>, <#output pins>)
 <enable_node> <addr_node>* <output_node>* <(timing
 model) name> <(io_model) name> [FILE=<(file name) text
 value>] [DATA=<radix flag>$<program data>$]
 [MNTYMXDLY=<(delay select) value>] [IOLEVEL=<(interface
 model level) value>]

Where:

Address nodes are given MSB first.

file name text value is:

The name of an Intel Hex format file which specifies the
programming data for the ROM. The file name may be
specified as a text constant (enclosed in double quotes
'"'), or as a text expression (enclosed in vertical bars
'|'). If a FILE is specified, any programming data
specified by a DATA section is ignored.

radix flag is one of:

 B binary data follows
 O octal data follows (most significant bit has

 lowest address)

 X hexadecimal data follows (most significant bit has
 lowest address)

program data:

The program data is a string of data values used to program
the ROM. The values start at address zero, first output
bit. The next bit specifies the next output bit, and so on
until all of the output bits for that address have been
specified. Then the output values for the next address are
given, and so on.

The data values must be enclosed in dollar signs ('$'). The
data values may have spaces or continuation lines between
the data values.

The following example defines a 4-bit by 4-bit to 8-bit
multiplier ROM.

 UMULTIPLY ROM(8, 8) ; 8 address bits, 8 outputs
 + AIN0 AIN1 AIN2 AIN3 ; the first 4 bits of address
 + BIN0 BIN1 BIN2 BIN3 ; the second 4 bits of address
 + OUT0 OUT1 OUT2 OUT3 OUT4 OUT5 OUT6 OUT7 ; the outputs
 + ROM_MDL ; the timing model name
 + IO_STD ; the I/O model name
 + DATA=X$; the programming data
 * B input value:
 * 0 1 2 3 4 5 6 7 8 9 A B C D E F
 + 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ; A =0
 + 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F ; A =1
 + 00 02 04 06 08 0A 0C 0E 10 12 14 16 18 1A 1C 1E ; A =2
 + 00 03 06 09 0C 0F 12 15 18 1B 1E 21 24 27 2A 2D ; A =3
 + 00 04 08 0C 10 14 18 1C 20 24 28 2C 30 34 38 3C ; A =4
 + 00 05 0A 0F 14 19 1E 23 28 2D 32 37 3C 41 46 4B ; A =5
 + 00 06 0C 12 18 1E 24 2A 30 36 3C 42 48 4E 54 5A ; A =6
 + 00 07 0E 15 1C 23 2A 31 38 3F 46 4D 54 5B 62 69 ; A =7
 + 00 08 10 18 20 28 30 38 40 48 50 58 60 68 70 78 ; A =8
 + 00 08 12 1B 24 2D 36 3F 48 51 5A 63 6C 75 7E 87 ; A =9
 + 00 0A 14 1E 28 32 3C 46 50 5A 64 6E 78 82 8C 96 ; A =A
 + 00 0B 16 21 2C 37 42 4D 58 63 6E 79 84 8F 9A A5 ; A =B
 + 00 0C 18 24 30 3C 48 54 60 6C 78 84 90 9C A8 B4 ; A =C
 + 00 0D 1A 27 34 41 4E 5B 68 75 82 8F 9C A9 B6 C3 ; A =D
 + 00 0E 1C 2A 38 46 54 62 70 7E 8C 9A A8 B6 C4 D2 ; A =E
 + 00 0F 1E 2D 3C 4B 5A 69 78 87 96 A5 B4 C3 D1 E1$; A =F

The timing model for the ROM has a model type of UROM. The
model parameters are:

 Name Description Units Default

 TPADHMN delay: address to data, low to hi, min sec 0
 TPADHTY delay: address to data, low to hi, typ sec 0
 TPADHMX delay: address to data, low to hi, max sec 0
 TPADLMN delay: address to data, hi to low, min sec 0
 TPADLTY delay: address to data, hi to low, typ sec 0
 TPADLMX delay: address to data, hi to low, max sec 0
 TPEDHMN delay: enable to data, hiZ to hi, min sec 0
 TPEDHTY delay: enable to data, hiZ to hi, typ sec 0
 TPEDHMX delay: enable to data, hiZ to hi, max sec 0
 TPEDLMN delay: enable to data, hiZ to low, min sec 0
 TPEDLTY delay: enable to data, hiZ to low, typ sec 0
 TPEDLMX delay: enable to data, hiZ to low, max sec 0
 TPEDHZMN delay: enable to data, hi to hiZ, min sec 0
 TPEDHZTY delay: enable to data, hi to hiZ, typ sec 0
 TPEDHZMX delay: enable to data, hi to hiZ, max sec 0
 TPEDLZMN delay: enable to data, low to hiZ, min sec 0
 TPEDLZTY delay: enable to data, low to hiZ, typ sec 0
 TPEDLZMX delay: enable to data, low to hiZ, max sec 0
 MNTYMXDLY delay selection: 0=default, 1=min, 2=typ, 3=max 0

3) Random Access Read-Write Memories

The PSpice digital simulator now has primitive logic devices
which are random access read-write memories.

The RAM is normally initialized with unknown data at all
addresses. There are two ways to provide other
initialization data for RAMs. The normal way is to give the
name of an Intel Hex Format file. This file is read before
the simulation starts, and the RAM is initialized to match
the data in the file. The other way to initialize the RAM
is to include the initialization data on the device line
(with the DATA=... construct).

If parts from the MicroSim library are used with an Intel
Hex format initialization file, then the engineer does not
need to use the RAM device primitive, or any of the model
information below, since the library contains all of the
appropriate modeling information. Using a RAM from the
library is just the same as using any other logic device
from the library, except that you may want to tell PSpice
the name of an Intel Hex file which contains the RAM
initialization. A TEXT parameter named HEXFILE is used to
specify the file name, as shown in the example below. If no
initialization is needed, then you can omit the HEXFILE
parameter, or set it to an empty name ("").

 X1 CSbar WEbar A0 A1 A2 A3 A4 A5 A6 A7 A8 A9
 + O0 O1 O2 O3
 + RAM2114A
 + TEXT: HEXFILE = "mydata.hex"

This example creates a 2114A RAM (1K x 4) which is
programmed by the Hex file mydata.hex.

NOTE: The 4.04P release (Beta Site 4.04) does not support
the reading of Intel Hex Format files.
Random Access Read-Write Memory Device Format:

 U<name> RAM(<#address bits>, <#output bits>)
 <read_enable_node> <write_enable_node> <addr_node>*
 <write_data_node>* <read_data_node>* <(timing model)
 name> <(io_model) name> [FILE=<(file name) text
 value>] [DATA=<radix flag>$<initialization data>$]
 [MNTYMXDLY=<(delay select) value>] [IOLEVEL=<(interface
 model level) value>]

Where:

Address nodes are given MSB first.

file name text value is:

The name of an Intel Hex format file which specifies the
initialization data for the RAM. The file name may be
specified as a text constant (enclosed in double quotes
'"'), or as a text expression (enclosed in vertical bars
'|'). If a FILE is specified, any initialization data
specified by a DATA section is ignored.

radix flag is one of:

 B binary data follows
 O octal data follows (most significant bit has

 lowest address)
 X hexadecimal data follows (most significant bit has

 lowest address)

initialization data:

The initialization data is a string of data values used to
initialize the RAM. The values start at address zero, first
output bit. The next bit specifies the next output bit, and
so on until all of the output bits for that address have
been specified. Then the output values for the next address
are given, and so on.

The data values must be enclosed in dollar signs ('$'). The
data values may have spaces or continuation lines between
the data values.

The initialization of a RAM using the DATA=... construct is
the same as the programming of a ROM. See the ROM for an
example.

The timing model for the RAM has a model type of URAM. The
model parameters are:

 Name Description Units Default

 TPADHMN delay: address to read data, low to hi,min sec 0
 TPADHTY delay: address to read data, low to hi,typ sec 0
 TPADHMX delay: address to read data, low to hi,max sec 0
 TPADLMN delay: address to read data, hi to low,min sec 0
 TPADLTY delay: address to read data, hi to low,typ sec 0
 TPADLMX delay: address to read data, hi to low,max sec 0
 TPERDHMN delay: read enable to read data, hiZ to hi, min sec 0
 TPERDHTY delay: read enable to read data, hiZ to hi, typ sec 0
 TPERDHMX delay: read enable to read data, hiZ to hi, max sec 0
 TPERDLMN delay: read enable to read data, hiZ to low, min sec 0
 TPERDLTY delay: read enable to read data, hiZ to low, typ sec 0
 TPERDLMX delay: read enable to read data, hiZ to low, max sec 0
 TPERDHZMN delay: read enable to read data, hi to hiZ, min sec 0
 TPERDHZTY delay: read enable to read data, hi to hiZ, typ sec 0
 TPERDHZMX delay: read enable to read data, hi to hiZ, max sec 0
 TPERDLZMN delay: read enable to read data, low to hiZ,min sec 0
 TPERDLZTY delay: read enable to read data, low to hiZ,typ sec 0
 TPERDLZMX delay: read enable to read data, low to hiZ,max sec 0
 TSUDEWMN min setup time: data to write enable rise, min sec 0
 TSUDEWTY min setup time: data to write enable rise, typ sec 0
 TSUDEWMX min setup time: data to write enable rise, max sec 0
 TSUAEWMN min setup time: address to write enable rise, min sec 0
 TSUAEWTY min setup time: address to write enable rise, typ sec 0
 TSUAEWMX min setup time: address to write enable rise, max sec 0
 TWEWHMN min width: enable write hi, min sec 0
 TWEWHTY min width: enable write hi, typ sec 0
 TWEWHMX min width: enable write hi, max sec 0
 TWEWLMN min width: enable write low, min sec 0
 TWEWLTY min width: enable write low, typ sec 0
 TWEWLMX min width: enable write low, max sec 0

 THDEWMN min hold time: write enable fall to data change, min sec 0
 THDEWTY min hold time: write enable fall to data change, typ sec 0
 THDEWMX min hold time: write enable fall to data change, max sec 0
 THAEWMN min hold time: write enable fall to addr change, min sec 0
 THAEWTY min hold time: write enable fall to addr change, typ sec 0
 THAEWMX min hold time: write enable fall to addr change, max sec 0
 MNTYMXDLY delay selection: 0=default, 1=min, 2=typ, 3=max 0

The RAM has separate read and write sections, with separate
data and enable pins, and shared address pins. To write to
the RAM the address and write data signals must be stable
for the appropriate setup times, then write enable is
raised. It must stay high for at least the minimum time,
then fall. Address and data must remain stable while write
enable is high, and for the hold time after it falls. Write
enable must remain low for at least the minimum time, before
changing.

To read from the RAM, raise read enable, and the outputs
will change from hiZ to the appropriate value after a delay.
The address may change while read enable is hi, and if it
does, the new data will be available at the outputs after
the delay.

Nothing prevents both read and write enable from being true
at the same time, although most real devices would not allow
this. The new value from the write is sent to the read data
outputs on the falling edge of write enable.

 4) New TEXT parameter

 .TEXT Text parameter definition

General Form:

 .TEXT < <name> = " <text value> " >*

 .TEXT < <name> = | <text expression> | >*

Examples

 .TEXT MYFILE = "FILENAME.EXT"
 .TEXT FILE = "ROM.DAT", FILE2 = "ROM2.DAT"
 .TEXT PROGDAT = |"ROM"+TEXTINT(RUN_NO)+".DAT"| ;
 .TEXT DATA1 = "PLD.JED", PROGDAT =
 |"\PROG\DAT\"+FILENAME|

The keyword .TEXT is followed by a list of names with text
values. The values may be text constants (enclosed in "),
or text expressions (enclosed in |). Text expressions may
contain only text constants or previously defined
parameters.

<name> can not be a .PARAM name, or any of the reserved
.PARAM names.

Once defined a text parameter can be used in only these
places: to specify a JEDEC file to program a Programmable

Logic Array, to specify an Intel Hex file to program a Read
Only Memory, to specify an Intel Hex file to initialize a
Random Access Read-Write Memory, to specify a text parameter
value for a subcircuit, as part of a text expression used in
one of these places or in a .TEXT statement. Note that text
parameters and expressions are not useful unless you have
the Digital Simulation Option.

Text expressions may contain: text constants (enclosed in
"), text parameters, the '+' operator which concatenates two
text values, or the TEXTINT(<value or expression>) function
which returns a text string which is the integer value
closest to the value of the <value or expression> (<value or
expression> is a floating point value).

STIMULUS EDITOR

1) A mouse can now be used on all platforms to make menu selections
and to perform other miscellaneous functions easier than can be
done using the keyboard.

2) For SUN systems: In Probe, Parts, and StmEd the colors used for
the foreground, background, and the traces on Sun systems can be
changed. For details see the "Probe" section in this document.

CONTROL SHELL

1) "Set-up" has been moved from the Probe Menu to the bottom of
the Files Menu. It has been renamed "Display/Prt Setup...".

2) The default device file is now PSPICE.DEV. The Control
Shell will not let you run StmEd or Probe if a device
file is not found.

3) The Probe/Auto-Run menu item now defaults to yes.

4) The editor and browser fall back to allocating 16K of memory
if they can't find 32K.

